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Abstract - Recent studies suggest that the combination 
of imagery from earth observation satellites with 
complementary spectral, spatial, and temporal 
information may provide improved land cover 
classification performance.  This paper assesses the 
benefits of new biologically-based image fusion and 
fused data mining methods for improving 
discrimination between spectrally-similar land cover 
classes using multi-spectral, multi-sensor, and multi-
temporal imagery.  For this investigation multi-season 
Landsat and Radarsat imagery of a forest region in 
central New York State was processed using opponent-
band image fusion, multi-scale visual texture and 
contour enhancement, and the Fuzzy ARTMAP neural 
classifier. These methods are shown to enable 
identification of sub-categories of land cover and 
provide improved classification accuracy compared to 
traditional statistical methods. 
 
 
Keywords: Image fusion, pattern recognition, pattern 
learning, land cover classification, neural network  
 

1 Introduction 
 
During the past decade significant advances in satellite 
sensor technology, data processing techniques, and 
computational power have made it possible to obtain new 
information about earth features and their relationships 
from a more global perspective.  Recent advances in 
multi-sensor fusion are making it possible to combine 
complementary information from multiple regions of the 
electromagnetic spectrum. Several studies suggest that the 
combination of remotely-sensed electro-optical and 
microwave data may improve overall land cover 
classification accuracy [1].  Fusion of visible and infrared 
electro-optical data and synthetic aperture radar data, 
from different regions of the electromagnetic spectrum, 
may provide increased interpretation capabilities for 
forest classification [2][3][4].  Temporal data which 
includes seasonal changes can be used to add another 
dimension of useful information for classification [5]. 

Neural network classification approaches are increasingly 
being used to incorporate multi-sensor and multi-source 
data into the classification process. A significant 
advantage of neural network classification methods over 
traditional statistical methods is that they do not require 
prior knowledge of the statistical distribution of the 
classes in the data sources in order to perform 
classification.  While the predominant neural network 
architecture has been the feed-forward multiple layer 
perceptron with back-propagation learning, adaptive 
resonance theory map (ARTMAP) neural networks offer 
several advantages for classification of remotely sensed 
imagery for land cover mapping [6].  Perhaps the most 
significant advantage is that ARTMAP neural networks 
utilize match-based learning as compared to the error-
based learning of back-propagation networks.  As a 
result, ARTMAP neural networks have the unique 
capability of learning new categories without corrupting 
previously learned categories.  Another advantage of 
ARTMAP neural networks is that they are self-organizing 
and therefore do not require prior specification of the 
neural network structure. 
 
This paper discusses the application of a new image 
fusion and fused data mining approach for combining and 
exploiting complementary multi-spectral, multi-sensor, 
and terrain-contextual data to enhance discrimination 
between spectrally-similar land cover classes and 
improve land cover classification performance [7][8].  
The described methods utilize a biologically-based 
implementation of opponent-band image fusion, in 
conjunction with visual texture and contour enhancement 
on multiple scales, the Fuzzy ARTMAP neural classifier, 
and a salient-feature discovery algorithm.  Advantages of 
this neural fusion approach include adaptive contrast 
enhancement, the ability to identify subtle and non-linear 
patterns, as well as the ability to utilize spectral, textural, 
and temporal patterns in the classification process.  The 
difficult problem of forest classification was selected for 
this investigation to enable a rigorous evaluation of these 
methods. Classification performance was evaluated in 
three ways using multi-spectral datasets, multi-sensor 
datasets, and multi-temporal datasets to enable added-
value assessment of different sensor and data modalities. 
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2 Study Site 
 

The site selected for this research was a forested region 
located in central New York State (42.75º N, 76.08º W), 
representative of the Appalachian plateau.  This region of 
rolling hills and valleys, originally formed by glaciers, 
contains more than 4,000 ha of conifer tree plantations and 
natural deciduous hardwood trees.  In addition, this region 
includes several open areas, agricultural fields, brush/shrub 
land, ponds, streams, roads, trails, and a downhill ski area.  
Elevations in this region vary between 382 and 625 meters 
above mean sea level.  As can be seen more clearly in 
Figure 1, the naturally diverse terrain and land cover at this 
site provides a rich and challenging environment for land 
cover classification studies. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  View of New York State Forest study site 

3 Dataset 
 
A multi-season dataset was developed for this analysis 
which consisted of three pairs of Landsat and Radarsat 
images collected during “leaf-off” spring, “leaf-on” 
summer, and “leaf-senescent” fall seasons of the same 
year.  Additionally, a 10 meter resolution Digital 
Elevation Model (DEM) mosaic image was developed for 
the site using USGS 7.5-minute quadrangle DEM files 
and a high resolution mosaic reference image was 
developed using 1 meter resolution color infrared Digital 
Ortho Quarter Quad (DOQQ) images.  

3.1

3.2

3.3

 Landsat 7 ETM+ Seasonal Imagery 
 
Three seasonal Landsat-7 ETM+ images of the study site 
were obtained for the dates of 28 April 2001, 15 June 
2001, and 5 October 2001 which approximately 
correspond to the spring, summer, and fall growing 
seasons.  An April 2001 visible band image of the study 
site is shown in Figure 2 with the leaves of the deciduous 
hardwood trees just beginning to emerge in some areas.  
In this image, the dark green coniferous forest plantations 
can be can readily be distinguished from the deciduous 
forest areas which appear brownish in their leaf-off state.  
However, discrimination between different species of 
coniferous or deciduous forest in this color image can be 
seen to be more difficult.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  April 2001 Landsat image of the study site 

 Radarsat Imagery 
 
Three Radarsat synthetic aperture radar (SAR) images of 
the study site were obtained for the dates of 7 May 2001, 
11 August 2001, and 5 October 2001.  These images were 
selected to correspond to the spring, summer, and fall 
Landsat multi-spectral images.  These fine-beam mode 
SAR path images have a ground resolution distance of 
about 8 meters and incidence angles that range between 
42.79 º and 46.74º.  Figure 3 shows a Radarsat image of 
the study site collected on 7 May 2001.  Note that 
although fields, ponds, roads, and man-made features can 
be readily identified in this image, differences between 
forest classes are much more difficult to discern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  May 2001 Radarsat image of the study site 

 Digital Elevation Model 
 
A 10 meter spatial resolution digital elevation model 
(DEM) was developed for the study site by combining six 
7.5-minute by 7.5-minute quadrangle digital elevation 
data files into a single mosaic terrain elevation model.  
This data was used to create a model of the terrain surface 
to enable analysis of the fused multi-sensor image data in 
a three-dimensional geo-spatial context.  



4 Ground Truth 
 
Ground truth data for study site was established using a 
combination of forest compartment maps, continuous 
forest inventory plots, high resolution aerial orthographic 
images, and numerous field surveys with a Global 
Positioning System (GPS) receiver. 

4.1

4.2

4.3 Continuous Forest Inventory Plots 
 
An extensive ground reference database of more than 350 
continuous forest inventory (CFI) plots on an 
approximate 300 meter grid has been developed for much 
of the study region by the State University of New York 
College of Environmental Science and Forestry.  The 
position of each CFI plot was determined using survey 
grade GPS equipment and marked with a permanent 
ground stake to provide a consistent baseline for 
continuous forest characterization over time.  Data 
collected for each CFI plot includes a detailed description 
of all trees within a 15 meter radius of each point, as well 
as plot-wide information on the slope and aspect of the 
terrain. 

 Arial Photographs and Field Surveys 
 
Although forest compartment maps provided valuable 
information on the dominant tree species in many regions 
of this New York State forest region and the CFI plots 
provided valuable tree-level data at many point locations, 
this data alone was not sufficient for identifying 
homogeneous groupings of individual tree species needed 
for training the neural search agents and for evaluating 
forest land cover classification results.  Information 
pertaining to the distribution of individual forest species 
across the test site was obtained using 1 meter resolution 
color infrared aerial photographs in conjunction with field 
surveys using a hand-held GPS receiver.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Color IR aerial photo of forest compartments 
 
A detailed view of some of the forest compartments 
located at the study site can be seen in Figure 4.  At the 
high resolution of this aerial photograph, many regions of 
the labeled forest compartments can be seen to be non-

homogeneous.  The compartment labeled Red Pine, for 
example, appears to be fairly homogeneous in the region 
on the left, but hardwood trees can be seen to have grown 
up through the Red Pine in many portions of the middle 
and lower right regions.  At the much lower resolutions of 
the Landsat and Radarsat imagery, these non-
homogeneous areas are much more difficult to discern 
and often appear as mixed pixels. 

 Ground Truth Map 
 
Based on information gathered during field surveys, 
several regions of the study site were identified which 
contain groupings of homogeneous tree species that could 
be used to train the neural search agents and evaluate 
their performance for forest land cover characterization.  
The selected ground truth regions are illustrated in Figure 
5 with an April 2001 Landsat panchromatic image shown 
in the background for reference. 
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Figure 5:  Homogeneous land cover ground truth areas 

5 Data Pre-Processing 
 
Image fusion is generally performed by combining 
information at the pixel level from multiple images.  
Fusion of images from multiple sensors and multiple 
viewing geometries requires that all of the images be 
registered to a common geographical reference and that 
the images also be registered to each other.  This is a 
critical step in the image fusion process since 
misregistration errors can cause signature feature 
information from different ground resolution cells to be 
incorrectly combined. 
 
For this investigation all images in the dataset were re-
projected to a common UTM Zone 18, WGS84 
coordinate system, orthorectified, and co-registered.  In 
addition, the Landsat imagery was corrected for both 
atmospheric and topographic effects to enable more 
accurate comparison of the spectral and thermal 
signatures in the multi-temporal data.  A ground 
reflectance image was calculated for each of the Landsat 
spectral bands and a ground brightness temperature image 



was calculated for the thermal infrared bands. The 
Radarsat data was processed using a Gamma - Maximum 
A Priori speckle reduction filter to reduce unwanted 
system noise in the image and enhance the ability to 
distinguish scene textures.  The Radarsat images were 
then processed to convert the data from slant-range to 
ground-range and terrain height corrections were 
performed to remove terrain lay-over effects produced by 
the side-looking SAR geometry.  A sigma naught 
correction was applied to the SAR images to reduce 
terrain incidence angle effects on the return signal.  
Finally all Landsat and Radarsat images were then re-
sampled to a common 15 m resolution to enable pixel-
level image fusion. 

6 Neural Image Fusion 
 
Fusion and image mining of the multi-spectral and multi-
sensor data was performed using new Neural Fusion tools 
recently developed by BAE Systems Advanced 
Information Technologies as an add-on module to 
ERDAS Imagine®.  This software consists of a set of 
modules that can be configured by an analyst to 
normalize and condition registered images, fuse multi-
spectral and multi-sensor images, and process terrain 
spatial characteristics [9][10].  Using a guided-learning 
process the dataset can then be interactively mined to 
detect objects at the pixel level from their combined 
multi-spectral and multi-sensor signatures in conjunction 
with their local spatial characteristics. 

6.1

6.2

6.3

6.4

 Image Conditioning 
 
Based on models of spatial-opponent processing in the 
bipolar and horizontal cells of the human retina, modified 
center-surround shunting neural networks [11] were used 
to adaptively normalize and contrast enhance each of the 
co-registered panchromatic, visible, infrared, thermal, and 
SAR images prior to multi-band and multi-sensor fusion.  
This process provides a high frequency boost in 
combination with ratio processing on three scales for each 
pixel in the image.  The high frequency boost enhances 
detail, while the ratio processing suppresses some effects 
of locally varying illumination across the scene and acts 
as a local gain control for adaptive normalization.  This 
processing converts the original image brightness to a 
controlled mixture of brightness and spatial contrast.  
This initial stage of normalization and conditioning is 
particularly useful when combining images of large 
dynamic range with images of limited dynamic range or 
when combining data from different sensors. 

 Image Fusion 
 
A neural image fusion process based on human visual 
opponent-color processing was applied to combinations of 
registered visible, near infrared, short-wave infrared, 
thermal infrared, panchromatic, and radar images to 
produce color fused images by means of opponent-color 
visual processing,  as shown in Figure 6.  This fusion 
process is also implemented using feed-forward center-

surround shunting networks which serve to decorrelate 
information in image layer pairs.  This process acts to 
contrast enhance spectral differences between images and 
map these differences to the human opponent color 
channels, red vs. green and blue vs. yellow.  Single-
opponent and double-opponent color contrast image 
products are then combined with an intensity image and 
converted to red, green, and blue for display.  The fused 
results can be used for both visualization or as additional 
image layers for classification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6:  Multi-sensor neural image fusion architecture 

 

 Spatial Features 
 
Additional image layers were created to exploit spatial 
and contextual patterns data in the vicinity of any pixel.  
This additional spatial content can contribute useful 
signature information for roads, rivers, forests, orchards, 
and urban areas.  Multi-scale contour images, periodic 
texture images, and grayscale variance images were 
produced for the Landsat panchromatic images and 
Radarsat SAR images to provide additional information 
useful for discriminating between spectrally-similar land 
cover classes.  Digital elevation data was also used to 
create three-dimensional terrain contextual feature 
information layers including terrain height, slope, mean 
curvature, and Gaussian curvature images. 

 Contour Features 
 
Each of the seasonal Landsat panchromatic and Radarsat 
SAR images was processed to create a set of boundary 
contour images which characterize perceptual edges, 
extended contours, and feature groupings in the imagery 
to support land cover characterization.  Contour images 
were developed at multiple scales using elongated Gabor 
filters of both even and odd polarity.  Each of the images 
was processed using twelve oriented Gabor filters that 
compete across orientation and local image space, but 
cooperate across scales in a manner that approximates the 
Boundary Contour System (BCS) in the visual cortex 
[12][13][14]. The use of multi-scale Gabor filters enables 
the processing of spatial frequency contrast information 
in addition to edge contrast enhancement.  



6.5 

6.6

6.7

Grayscale Variance 
 
Each of the Landsat panchromatic and Radarsat SAR 
images was also processed to produce grayscale variance 
images on multiple scales over a local neighborhood. 
Grayscale variance images provide a measure of tonal 
variation in the remotely sensed images which can often 
be related to the texture of the terrain surface.  For 
example, forested regions with rougher tree crown 
textures appear with considerable variations in the gray-
level brightness, while smoother surface textures such as 
agricultural fields or water are displayed with very little 
variation.  These textural variations can add another 
useful element of information for discriminating between 
spectrally-similar terrain surfaces. 

 Periodic Textures 
 
Each of the seasonal Landsat panchromatic and Radarsat 
SAR images was also processed using broad Gabor filters 
at multiple scales to create a set of periodic spatial texture 
images which can be used to characterize terrain features 
with repetitive spatial patterns, such as rows of trees, 
orchards, or evenly spaced houses.  This measure of 
textural energy is often useful for identifying regions of 
high spatial frequency in the images.  It should be noted 
that the absence of any periodic texture can sometimes 
also be a useful discrimination feature.  

 Three Dimensional Terrain Features 
 
The orthorectified DEM developed for the study site was 
used to generate additional images representing three-
dimensional spatial context information.  Elevation, 
slope, mean curvature, and Gaussian curvature images 
were generated for this analysis, although other measures 
of spatial context could also have been easily 
incorporated for use in the data mining process. 
 
Terrain elevation and slope data can sometimes provide 
useful spatial context information for land cover 
classification, such as for mountainous regions where 
forest composition varies systematically with terrain 
elevation.  Mean and Gaussian surface curvatures 
calculated from the digital elevation data for each pixel 
based on classical equations of differential geometry can 
be used to identify terrain features such as ridges, valleys, 
saddles, peaks, pits, and flat planes.  These measures of 
local terrain surface curvatures can provide useful 
information for the study of many environmental and 
ecological processes including the estimation of rainwater 
run-off for watershed analysis, characterization of soil 
properties, and evaluation of forest ecosystem 
productivity.  In this forest classification study for 
example, this spatial context data was found to provide 
additional discrimination information useful for 
identification of some forest species such as Hemlock 
which tend to grow naturally in the wetter valley regions. 
 

7 Image Deepfile Creation 
 
After the pre-processing, image conditioning, image 
fusion, and spatial feature exploitation stages were 
completed, the co-registered images were combined into 
multi-layer image stacks or “deepfiles”, as illustrated in 
Figure 7.  These spectrally and spatially enhanced image 
layers provide an expanded library of information that 
can be used by the neural network pattern learning and 
recognition algorithm to discriminate between different 
forest land cover classes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7:  Multi-layer image deepfile 

 
A total of eight different deepfiles were created to support 
added-value assessment analysis of the spectral, spatial, 
and temporal data for forest characterization.  First, three 
deepfiles were created using the seasonal Landsat image 
layers, the digital elevation data, the opponent contrast 
image layers, the color fused multi-band image layers, 
and the terrain contextual image layers to enable 
comparison of forest characterization results using neural 
image fusion methods with results obtained using the 
traditional maximum likelihood classifier. Next, three 
additional deepfiles were created using the data from the 
seasonal Landsat deepfiles plus the corresponding 
Radarsat images, multi-sensor opponent contrast images, 
color fused Landsat and Radarsat images, and the terrain 
contextual images to support added-value assessment of 
multi-sensor fusion for forest characterization.  Finally, 
the three seasonal Landsat deepfiles were combined into a 
single multi-temporal Landsat deepfile and the three 
seasonal Landsat-Radarsat deepfiles were combined into 
a single multi-temporal Landsat-Radarsat deepfile to 
support added-value assessment of temporal pattern 
recognition for forest characterization. 
 



8 Image Mining 
 
Using a guided-learning process, the deepfile dataset was 
then interactively mined to detect objects at the pixel 
level from their combined multi-spectral and multi-sensor 
signatures in conjunction with their local spatial 
characteristics.  Image mining was accomplished for each 
of the seasonal and temporal deepfiles using a modified 
Fuzzy ARTMAP neural network followed by a salient-
feature discovery algorithm.  A functional diagram of the 
modified Fuzzy ARTMAP neural network used for image 
mining is shown in Figure 8.  
 
 

 
Figure 8: Simplified Fuzzy ARTMAP neural network 

 
 
This network consists of a lower ART module which 
performs unsupervised clustering of deepfile feature 
vectors into categories, and an upper layer in which the 
learned categories form associations with either the 
desired class or the background terrain through 
supervised training [15].  This approach enables the 
network to learn a compressed representation of the 
desired class in the context of the background terrain.  
The Fuzzy ARTMAP network combines unsupervised 
category learning with supervised class association.  A 
salient-feature discovery algorithm exploits the signatures 
of both the desired land cover class and the background 
context to discover reduced feature subspaces that are 
sufficient for learning to recognize forest classes from the 
provided training data.  The salient-feature discovery 
algorithm attempts to find those features in the input data 
that enable adequate separation between the desired class 
example and counter-example training pixels [16]. 
 
Search agents were trained using both examples and 
counter-examples for each desired forest land cover class.  
Supervised training was primarily performed in the forest 
region, on the southwest side of the test site, while search 
results were evaluated across the entire test site.  
Typically, about 100 pixels were provided as examples 
and 200-300 pixels were provided as counter-examples 
for the training of each forest and land cover class.  
Training was performed for the broad land cover classes 
of deciduous, coniferous, open/agricultural, and water, as 
well as for specific forest species including Norway 

Spruce, Red Pine, White Pine, Hemlock, White Cedar, 
and Larch.  Five different salient feature subspaces were 
discovered and used to provide classification evidence.  
For this analysis, pixels for which there was agreement 
between 4 of the 5 salient subspace classifications were 
selected as detections.  Higher or lower confidence levels 
could be selected depending on the application.  
Typically, only a few of the deepfile image layers were 
needed to achieve the desired classification performance 
for a specific land cover class. 
 
For performance evaluation, detections were declared if 
the identified search pixel was within a single pixel of the 
specified ground truth pixels.  A detection neighborhood 
of plus or minus one pixel was used to compensate for re-
sampling and rasterization errors.  Declaration of 
misclassifications or “false alarms” was performed in a 
similar manner.  No morphological filtering was applied 
to the detection results, such as filling in holes or 
removing of single pixels.  In this analysis, the 
probability of detection is defined as the number of 
correctly identified ground truth pixels divided by the 
total number of ground truth pixels in the specified class.  
Pixels which do not satisfy the 4 out of 5 detection 
criteria are not classified, and reduce the probability of 
detection.  Missed pixels are not considered as false 
alarms.  The probability of false alarm is defined as the 
number of target class pixels detected in other ground 
truth categories divided by the total number of pixels in 
those other categories. 
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9 Results 
 
Classification was initially performed for each of the 
three seasonal Landsat images using the traditional 
maximum likelihood statistical classifier to provide a 
baseline against which the performance of the neural 
image fusion and feature extraction methods could be 
compared.  This classification was first performed for the 
broad land cover classes of open/agricultural, water, 
deciduous forest, and coniferous forest and then repeated 
with the single broad coniferous forest class being 
replaced the individual coniferous forest species of 
Norway Spruce, Red Pine, White Pine, Hemlock, White 
Cedar, and Larch. 
 
The classification results from each of seasonal Landsat 
datasets are shown in Table I.  This summary table 
provides a convenient means for quickly comparing the 
detection performance of the broad forest land cover 
classes and individual forest species classes for each of 
the datasets.  As can be seen in this table, the maximum 
likelihood classifier performed well for the broad land 
cover classes with probabilities of detection better than 
85% in any season.   However, classification performance 
for the spectrally-similar coniferous forest classes can be 
seen to be much lower with probabilities of detection 
ranging from 36% to 73%.  The overall probability of 
detection for maximum likelihood classification of the 
coniferous forest species was found to be 59.63% for the 
April 2001 imagery, 53.20% for the June 2001 imagery, 

ρΝΤ



and 54.69% for the October 2001 imagery.  Analysis of 
these results and corresponding classification maps 
revealed significant spectral confusion between the 
different classes of coniferous forest species which varied 
from season to season. 
 
 

Table I.  Maximum Likelihood classification: multi-season Landsat 
 

 Apr 2001 Jun 2001 Oct 2001 
 Pd Pfa Pd Pfa Pd Pfa
Open 96.1 0.2 97.9 1.3 97.1 0.6 
Water 89.9 0.0 87.1 0.0 85.8 0.0 
Deciduous 99.0 8.4 96.8 6.7 91.7 7.1 
Coniferous 88.2 1.1 87.7 2.7 88.6 5.1 

 
Nor. Spruce 69.6 2.5 71.8 3.5 72.0 2.3 
Red Pine 56.2 5.7 51.7 3.0 50.8 3.3 
White Pine 39.3 2.5 36.3 0.4 44.5 0.7 
Hemlock 53.6 1.7 49.3 0.7 40.3 2.2 
White Cedar 66.1 2.9 51.0 3.3 59.0 3.9 
Larch 73.2 0.4 59.1 2.4 61.6 1.0 

 
 
Data mining and classification was then performed using 
the modified Fuzzy ARTMAP neural classifier for each 
of the three seasonal Landsat deepfiles and also for the 
multi-season temporal Landsat deepfile.  As previously 
discussed, each of the Landsat deepfiles contains the 
conditioned multi-band Landsat images, opponent-band 
contrast images, fused multi-band images, and spatial 
terrain context images.  Neural classification results for 
each of these Landsat datasets are shown in Table II. 
 
 

Table II.  Neural Fusion classification: multi-season Landsat 
 

 Apr 2001 Jun 2001 Oct 2001 Temporal 
 Pd Pfa Pd Pfa Pd Pfa Pd Pfa
Open 99.7 0.1 99.8 0.3 99.1 0.1 99.6 0.1 
Water 100 0.0 99.8 0.3 99.2 0.0 100 0.0 
Deciduous 99.8 0.9 99.4 2.0 97.5 2.1 99.6 0.1 
Coniferous 98.8 0.1 93.7 0.3 91.3 0.8 99.6 0.2 

 
Nor. Spruce 97.9 0.2 88.4 0.4 93.9 0.2 97.3 0.1 
Red Pine 90.2 0.6 92.2 0.4 86.0 0.3 91.4 0.1 
White Pine 85.3 0.2 90.4 0.4 87.0 0.2 91.9 0.1 
Hemlock 92.2 0.4 84.1 0.2 71.0 0.4 95.2 0.1 
White Cedar 91.9 0.1 87.9 0.1 87.3 0.1 92.8 0.1 
Larch 83.6 0.1 87.6 0.1 94.1 0.3 95.3 0.1 

 
 
As can be seen in this table, the neural fusion methods 
performed very well for the broad land cover classes with 
probabilities of detection better than 91% in any single 
season and better than 99% using the multi-season 
temporal Landsat dataset.  The neural fusion methods can 
also be seen to provide good classification performance 
for each of the individual species of coniferous forest 
with probabilities of detection better than 70% for any 
season and better than 91% for the multi-season temporal 
dataset.  The overall probability of detection using the 
neural image fusion and data mining methods for 
classification of the coniferous forest species was found 
to be 90.18% for the April 2001 Landsat image deepfile, 
88.42% for the June 2001 Landsat image deepfile, and 
86.55% for the October 2001 Landsat image deepfile.  
The overall probability of detection for the multi-season 
temporal Landsat image deepfile was 93.99%.  The 
probabilities for false detections were found to be less 
than 1% for all coniferous forest classes in any season. 

Finally, data mining and classification was performed 
using the modified Fuzzy ARTMAP neural classifier for 
fused seasonal Landsat-Radarsat image deepfiles and the 
multi-season fused Landsat-Radarsat image deepfile.  
Neural classification results for each of these fused 
Landsat-Radarsat datasets are shown in Table III. 
 
 
Table III.  Neural Fusion classification: multi-season Landsat&Radarsat 
 

 Apr 2001 Jun 2001 Oct 2001 Temporal 
 Pd Pfa Pd Pfa Pd Pfa Pd Pfa
Open 99.6 0.0 98.7 0.0 97.8 0.1 99.5 0.0 
Water 100 0.0 100 0.1 99.9 0.0 100 0.0 
Deciduous 99.3 0.6 99.2 1.6 96.2 3.4 99.5 0.1 
Coniferous 97.3 0.2 93.9 0.4 91.1 0.8 99.7 0.1 

 
Nor. Spruce 97.2 0.2 91.2 0.2 92.1 0.1 98.6 0.1 
Red Pine 90.8 0.5 91.4 0.1 87.5 0.4 91.4 0.1 
White Pine 87.5 0.1 90.7 0.1 87.9 0.1 92.6 0.1 
Hemlock 92.5 0.4 82.9 0.3 73.2 0.7 95.4 0.1 
White Cedar 91.0 0.1 88.5 0.1 86.1 0.1 94.4 0.1 
Larch 84.8 0.1 89.9 0.3 93.2 0.3 95.9 0.1 

 
 
  As can be seen in this table, classification results using 
the fused Landsat-Radarsat image deepfiles are 
comparable to those obtained with the Landsat image 
deepfiles.  Probabilities of detection were determined to 
be better than 91% in any single season and better than 
99% using the multi-season temporal Landsat dataset.  
The neural fusion methods can also be seen to provide 
good classification performance for each of the individual 
species of coniferous forest with probabilities of detection 
better than 73% for any season and better than 91% for 
the multi-season temporal dataset.  The overall 
probability of detection using the neural image fusion and 
data mining methods for classification of the coniferous 
forest species was found to be 90.63% for the April 2001 
fused Landsat-Radarsat image deepfile, 89.18% for the 
June 2001 fused Landsat-Radarsat image deepfile, and 
86.66% for the October 2001 fused Landsat-Radarsat 
image deepfile.  The overall probability of detection for 
the multi-season temporal Landsat-Radarsat image 
deepfile was 94.71%.  The probabilities for false 
detections were found to be less than 1% for all 
coniferous forest classes in any season. 
 
Figure 9 shows an example of a coniferous forest 
classification map generated using the neural methods for 
the April 2001 Landsat dataset.  In this classification 
map, individual coniferous forest species detections are 
shown as an overlay on a grayscale Landsat panchromatic 
image for reference.  For clarity the broad classes of 
open/agricultural fields, water, and deciduous forest have 
not been shown.  As can be seen in this classification 
map, the application of neural methods resulted in high 
level of classification accuracy with few false detections.  
Closer inspection of these classification results using the 
high resolution aerial photographs revealed high levels of 
correlation across the entire scene for all regions of 
coniferous forest large enough to be represented by a few 
Landsat pixels.  The speckled appearance in some of the 
detected regions can generally be correlated with open 
areas or locations where hardwood trees have grown 
within the conifer tree plantations. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9:  Coniferous forest species classification, 
Neural Fusion methods, Landsat, April 2001 

10 Conclusions 
 
An approach for improving classification performance for 
spectrally-similar land cover classes using biologically-
based visual processing and pattern recognition methods 
was successfully demonstrated using widely available 
remotely sensed imagery and digital elevation data.    The 
added information derived from fusion of multiple bands 
of Landsat imagery in combination with terrain spatial 
context data enabled a significant improvement in the 
ability to classify individual forest species, compared to 
spectral-only maximum likelihood classification.  The 
additional incorporation of SAR imagery provided 
classification accuracies comparable to those obtained 
from the Landsat-only datasets.  Processing of the 
temporal pattern information across the seasonal datasets 
resulted in the most accurate classification of each forest 
species with the fewest misclassifications.  Examination 
of the salient feature layers utilized for each of the 
individual forest species classifications revealed that the 
color fused multi-band images and pair-wise spectral 
opponent images generally provided more useful 
information for discrimination than the single band 
images.  Spatial data such as grayscale variance, BCS 
contours, and surface curvatures also provided 
information useful for separating some spectrally-similar 
classes.  While the results of this research were shown in 
the context of forest classification using multi-spectral 
and synthetic aperture radar imagery, the described 
methods could be readily applied to other remote sensing 
applications or other sources of remote sensing data. 
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